科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
設(shè){an}是等差數(shù)列,數(shù)列{bn}滿足bn=anan+1an+2(n∈N*),{bn}的前n項和用Sn表示,若3a5=8a12>0,試問n為多大時,Sn達到最大,并加以證明.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
已知外接圓半徑為6的△ABC的邊為a,b,c,∠B,∠C和面積S滿足條件:S=a2-(b-c)2和sinB+sinC=.
(1)求sinA.
(2)求△ABC面積的最大值.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
求函數(shù)y=(sinx+1)(cosx+1)x∈[0,]的最值,并求相應(yīng)的x的值.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2,
(1)求f(1)的值.
(2)證明:對于一切大于1的正整數(shù)t,恒有f(t)>t.
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
設(shè)函數(shù)f(x)=x+,x∈[0,+∞)
(1)當(dāng)a=2時,求f(x)的最小值.
(2)當(dāng)0<a<1時,判斷f(x)的單調(diào)性,并寫出f(x)的最小值.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
已知f(x)是定義在[-6,6]上的奇函數(shù),且f(x)在[0,3]上是x的一次函數(shù),在[3,6]上是x的二次函數(shù),又當(dāng)3≤x≤6時,f(x)≤f(5)=3,f(6)=2,求f(x)的解析式.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
設(shè)a,b∈R,A={(x,y)|x=n,y=na+b,n∈Z},B={(x,y)|x=m,y=3m2+15,m∈Z},C={(x,y)|x2+y2≤144}是平面xOy內(nèi)點的集合,討論是否存在a,b,使得:
(1)A∩B≠.
(2)(a,b)∈C同時成立.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
已知關(guān)于x的一元二次方程:(m∈Z),mx2-4x+4=0①,x2-4mx+4m2-4m-5=0②.求方程①和②的根都是整數(shù)的充要條件.
查看答案和解析>>
科目: 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
已知:集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A∩B=,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com