相關習題
 0  209416  209424  209430  209434  209440  209442  209446  209452  209454  209460  209466  209470  209472  209476  209482  209484  209490  209494  209496  209500  209502  209506  209508  209510  209511  209512  209514  209515  209516  209518  209520  209524  209526  209530  209532  209536  209542  209544  209550  209554  209556  209560  209566  209572  209574  209580  209584  209586  209592  209596  209602  209610  266669 

科目: 來源: 題型:

圓錐PO如圖1所示,圖2是它的正(主)視圖.已知圓O的直徑為AB,C是圓周上異于A、B的一點,D為AC的中點
(1)求該圓錐的側面積S;
(2)求證:平面PAC⊥平面POD;
(3)若∠CAB=60°,在三棱錐A-PBC中,求點A到平面PBC的距離.

查看答案和解析>>

科目: 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且Sn=2an-n2+3n-2(n∈N*).
(Ⅰ)求證:數(shù)列{an+2n}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)若bn=
Sn+n2
an+2n
,求數(shù)列{bn}的前n項和Bn;
(Ⅲ)若cn=
1
an-2
,數(shù)列{cn}的前n項和為Tn,求證:Tn
3
4

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=lnx+ex,g(x)=ex+
1
2
x2-ax(a∈R)(e=2.71828…是自然對數(shù)的底數(shù))
(1)當a=
3
2
,設F(x)=f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(2)定義:若函數(shù)φ(x)在定義域為[m,n](m<n)上的值域為[m,n],則稱區(qū)間[m,n]為函數(shù)φ(x)的“同域區(qū)間”,在(1)的條件下,證明:函數(shù)F(x)在區(qū)間(0,2)內(nèi)存在“同域區(qū)間”;
(3)當a>1時,對于區(qū)間(2,3)內(nèi)任意兩個不相等的實數(shù)x1,x2都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間.
(2)判斷函數(shù)f(x)在區(qū)間(0,4)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx.
(1)當b=a-1時,討論f(x)的單調(diào)性;
(2)當a=0時,若函數(shù)f(x)有兩個不同的零點.求b的取值范圍;
(3)設A(x1,y1),B(x2,y2)為函數(shù)f(x)的圖象上的兩點,記k為直線AB的斜率,x0=
x1+x2
2
.求證f′(x0)<k.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
a(x2+1)+x-1
x
-lnx(a∈R).
(1)當0<a<
1
2
時,討論f(x)的單調(diào)性;
(2)設g(x)=x2-2bx+4,當a=
1
3
時,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)+g(x2)≤0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知體積為8,高為4的三棱柱ABC-A1B1C1,CC1⊥平面A1B1C1,點D、E分別在棱AA1和CC1上,且DE⊥B1C1,DA1=3,EC1=2.
(Ⅰ)求證C1A1⊥C1B1
(Ⅱ)求平面BDE與平面ABC所成銳二面角的最小值;
(Ⅲ)若用此三棱柱作為無蓋(上底面ABC)盛水容器,盛水時發(fā)現(xiàn)在D、E兩處有泄露,試問此容器最多能盛水多少?

查看答案和解析>>

科目: 來源: 題型:

設f(x)=ex-a(x+1)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,直線AB的斜率大于常數(shù)m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2ax+xlnx的圖象在x=e處的斜率為4,證明:當x>1時,f(x)-4x+3>0恒成立.

查看答案和解析>>

科目: 來源: 題型:

設點A(3,
5
2
),B(4,
3
),C(-3,-
5
2
),D(5,0),其中三點在雙曲線
x2
a2
-
y2
b2
=1,(a>0,b>0)上,另一點在直線l上.
(1)求雙曲線方程;
(2)設直線l的斜率存在且為k,它與雙曲線的同一支分別交于兩點E、F,M、N分別為雙曲線的左、右頂點,求滿足條件
EN
FM
+
EM
FN
=32的k值.

查看答案和解析>>

同步練習冊答案