相關(guān)習(xí)題
 0  245741  245749  245755  245759  245765  245767  245771  245777  245779  245785  245791  245795  245797  245801  245807  245809  245815  245819  245821  245825  245827  245831  245833  245835  245836  245837  245839  245840  245841  245843  245845  245849  245851  245855  245857  245861  245867  245869  245875  245879  245881  245885  245891  245897  245899  245905  245909  245911  245917  245921  245927  245935  266669 

科目: 來源: 題型:解答題

5.如圖,在四棱錐A-DCBE中,AC⊥BC,底面DCBE為平行四邊形,DC⊥平面ABC.
(Ⅰ)求證:DE⊥平面ACD;
(Ⅱ)設(shè)平面ADE∩平面ABC=直線l,求證:BC∥l;
(Ⅲ)若∠ABC=30°,AB=2,EB=$\sqrt{3}$,求三棱錐B-ACE的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中,M是BD的中點,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)若N是BC的中點,求證:AN∥平面CME;
(2)求證:平面BDE⊥平面BCD.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,四棱錐P-ABCD,底面ABCD為正方形,PA=PD,PA⊥平面PDC,E為棱PD的中點
(Ⅰ)求證:PB∥平面EAC
(Ⅱ)求證:平面PAD⊥平面ABCD.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-3x,g(x)=ex-ax(a∈R),其中e是自然對數(shù)的底數(shù).
(1)求經(jīng)過點A(-$\frac{2}{3}$,2)與曲線f(x)相切的直線方程;
(2)若函數(shù)F(x)=g(x)-1-xlnx(x∈(0,2]),求證:當(dāng)a<e-1時,函數(shù)F(x)無零點;
(3)已知正數(shù)m滿足:存在x0∈[1,+∞),使得g(x0)+g(-x0)<mf(-x0)成立,試比較em-1與me-1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,F(xiàn)1,F(xiàn)2是橢圓C:$\frac{{x}^{2}}{2}$+y2=1的左、右焦點,A,B是橢圓C上的兩個動點,且線段AB的中點M在直線l:x=-$\frac{1}{2}$上.
(1)若B的坐標(biāo)為(0,1),求點M的坐標(biāo);
(2)求$\overrightarrow{{F}_{2}A}$•$\overrightarrow{{F}_{2}B}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.在等比數(shù)列{an}中,a1=$\frac{1}{2}$,a4=4,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…$\frac{1}{{a}_{n}}$=$4-\frac{4}{{2}^{n}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在四棱錐ABCD中,點E、F、G分別為棱BC、BD、CD的中點,且AB=AG,BC=BD.
(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面BCD.

查看答案和解析>>

科目: 來源: 題型:解答題

13.求數(shù)列$\frac{1}{{1}^{2}+2}$,$\frac{1}{{2}^{2}+4}$,$\frac{1}{{3}^{2}+6}$,$\frac{1}{{4}^{2}+8}$,…,$\frac{1}{{n}^{2}+2n}$的前n項和.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知x,y都是正實數(shù),比較$\sqrt{{x}^{2}+{y}^{2}}$與(x3+y3)${\;}^{\frac{1}{3}}$的大。

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖所示的四棱錐P-ABCD,底面四邊形ABCD中,AD=BC=$\sqrt{5}$,AB=2CD=2$\sqrt{2}$,BO=2DO=2,PO⊥底面ABCD,且PA⊥PC.
(1)求VP-ABCD;
(2)求面PAD與面PBC所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案