相關習題
 0  252672  252680  252686  252690  252696  252698  252702  252708  252710  252716  252722  252726  252728  252732  252738  252740  252746  252750  252752  252756  252758  252762  252764  252766  252767  252768  252770  252771  252772  252774  252776  252780  252782  252786  252788  252792  252798  252800  252806  252810  252812  252816  252822  252828  252830  252836  252840  252842  252848  252852  252858  252866  266669 

科目: 來源: 題型:填空題

13.已知直線m,l和平面α,β,且l⊥α,m?β,給出下列四個命題:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命題的有①③(請?zhí)顚懭空_命題的序號)

查看答案和解析>>

科目: 來源: 題型:填空題

12.直線l的斜率k=x2+1(x∈R),則直線l的傾斜角α的范圍為$[\frac{π}{4},\frac{π}{2})$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且對任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,已知f(4)=5.
(Ⅰ)求f(2)的值;
(Ⅱ)解不等式f(m-2)≤2.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知由于城市的發(fā)展,合肥與南京之間的人員交流頻繁,為了緩解交通壓力,擬修建一條專用鐵路,用一列火車作為交通車,已知該火車每日往返的次數(shù)y是車頭每次拖掛車廂節(jié)數(shù)x的一次函數(shù),若車頭拖掛4節(jié)車廂,則每日往返16次,若車頭每次拖掛7節(jié)車廂,則每日往返10次.
(Ⅰ)求火車每日往返次數(shù)y與拖掛車廂節(jié)數(shù)x的函數(shù)關系式;
(Ⅱ)求這列火車每天運營的車廂的總節(jié)數(shù)S關于拖掛車廂節(jié)數(shù)x的函數(shù)關系式;
(Ⅲ)若每節(jié)車廂載客110人,求每次車頭拖掛多少節(jié)車廂時,每天運送的旅客人數(shù)最多?并計算出每天最多運送的客人人數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知定義域為R的函數(shù)$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函數(shù).
(Ⅰ)求實數(shù)b的值;
(Ⅱ)判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅲ)若關于x的方程f(x)=m在x∈[0,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.計算下列各式的值
(Ⅰ)lg24-lg3-lg4+lg5
(Ⅱ)${(\root{3}{3}•\sqrt{2})^6}+{(\sqrt{3\sqrt{3}})^{\frac{4}{3}}}-\root{4}{2}×{8^{0.25}}-{(2015)^0}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知函數(shù)f(x)=|x-2|,方程a[f(x)]2-f(x)+1=0有四個不同的實數(shù)解,則實數(shù)a的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知冪函數(shù)f(x)=(a2-9a+19)x2a-9的圖象恒不過原點,則實數(shù)a=3.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.給出下列四種說法:
(1)函數(shù)y=ax(a>0且a≠1)與函數(shù)$y={log_a}{a^x}(a>0$且a≠1)的定義域相同;
(2)函數(shù)y=x2與函數(shù)y=3x的值域相同; 
(3)函數(shù)$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$與函數(shù)$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均是定義在(-∞,0)∪(0,+∞)上的奇函數(shù); 
(4)函數(shù)y=(x-1)2與函數(shù)y=2x-1在(0,+∞)上都是奇函數(shù).
其中正確說法的序號是( 。
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

同步練習冊答案