科目: 來源: 題型:
【題目】已知函數(shù),在點處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)已知,當(dāng)時,恒成立,求實數(shù)的取值范圍;
(Ⅲ)對于在中的任意一個常數(shù),是否存在正數(shù),使得,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面平面,,四邊形為平行四邊形,,為線段的中點,點滿足.
(Ⅰ)求證:直線平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某班學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對本班人進行了問卷調(diào)查得到了如下的列聯(lián)表,已知在全部人中隨機抽取人抽到喜歡數(shù)學(xué)的學(xué)生的概率為.
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過的前提下認為喜歡數(shù)學(xué)與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取人進一步調(diào)查,設(shè)其中喜歡數(shù)學(xué)的女生人數(shù)為,求的分布列與期望.
下面的臨界表供參考:
(參考公式:,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù)存在兩個極值點,
①求實數(shù)的范圍;
②證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知是橢圓上的一點,從原點向
圓作兩條切線,分別交橢圓于點.
(1)若點在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
(3)試問是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】將個編號為、、、的不同小球全部放入個編號為、、、的個不同盒子中.求:
(1)每個盒至少一個球,有多少種不同的放法?
(2)恰好有一個空盒,有多少種不同的放法?
(3)每盒放一個球,并且恰好有一個球的編號與盒子的編號相同,有多少種不同的放法?
(4)把已知中個不同的小球換成四個完全相同的小球(無編號),其余條件不變,恰有一個空盒,有多少種不同的放法?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數(shù)列{an-1}為等比數(shù)列.
(2)若bn=anlog2(an-1),數(shù)列{bn}的前項和為Tn,求Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com