科目: 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某中學學生對數學學習的情況,從該校抽了名學生,分析了這名學生某次數學考試成績(單位:分),得到了如下的頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)根據頻率分布直方圖估計該組數據的中位數(精確到);
(3)在這名學生的數學成績中,從成績在的學生中任選人,求次人的成績都在中的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠預購軟件服務,有如下兩種方案:
方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;
方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.
(1)設日收費為元,每天軟件服務的次數為,試寫出兩種方案中與的函數關系式;
(2)該工廠對過去100天的軟件服務的次數進行了統(tǒng)計,得到如圖所示的條形圖,依據該統(tǒng)計數據,把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=∠BAD=120°,E,F分別為PD,BD的中點,且.
(1)求證:平面PAD⊥平面ABCD;
(2)求銳二面角E-AC-D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數),.以原點為極點,軸的非負半軸為極軸建立極坐標系.
(I)寫出曲線與圓的極坐標方程;
(II)在極坐標系中,已知射線分別與曲線及圓相交于,當時,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com