題目列表(包括答案和解析)
8.已知函數(shù),。規(guī)定:給定一個實數(shù),賦值,若,則繼續(xù)賦值,…,以此類推,若,則,否則停止賦值,如果得到稱為賦值了次()。已知賦值次后該過程停止,則的取值范圍是( )
A. B.
C. D.
7.設,,均為正數(shù),且,,,則( )
A. B. C. D.
6.設隨機變量-,且當二次方程無實根時的的取值概率為0.5,則( )
A.0 B.0.5 C.1 D.2
5.四面體的外接球球心在上,且,,則在外接球球面上,兩點間的球面距離是( )
A. B. C. D.
4.在平面直角坐標系中,已知頂點和,頂點在橢圓上,則的值是( )
A. B. C. D.與點位置有關(guān)
3.已知對任意實數(shù),有,,且時,,,則時,有( )
A., B.,
C., D.,
2.在等差數(shù)列中,若,則( )
A. B. C. D.
1.定義集合M與N的新運算:,若,,則等于( )
A. B. C. D.
22. (本題 12分) 設數(shù)列的前項和為,對一切,點都在函數(shù)的圖像上。
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為
分別計算各個括號內(nèi)各數(shù)之和,設由這些和按原來括號的前后順序構(gòu)成的數(shù)列,求
(Ⅲ)設為數(shù)列的前項積,是否存在實數(shù),使得不等式對一切都成立?若存在,求出的取值范圍;若不存在,請說明理由。
解:(Ⅰ)(法一)猜想,數(shù)學歸納法證明;----------------------------4分
(II)因為,所以數(shù)列依次按1項、2項、3項、4項循環(huán)地分為(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循環(huán)記為一組.由于每一個循環(huán)含有4個括號,故是第25組中第4個括號內(nèi)各數(shù)之和.由分組規(guī)律知,由各組第4個括號中所有第1個數(shù)組成的數(shù)列是等差數(shù)列,且公差為20.同理,由各組第4個括號中所有第2個數(shù)、所有第3個數(shù)、所有第4個數(shù)分別組成的數(shù)列也都是等差數(shù)列,且公差均為20.故各組第4個括號中各數(shù)之和構(gòu)成等差數(shù)列,且公差為80.注意到第一組中第4個括號內(nèi)各數(shù)之和是68,所以=68+24+80=1988.又=22,所以=2010.-------------8分
(III)(理)因為,故,
所以.
又,
故對一切都成立,就是
對一切都成立.--------------10分
設,則只需即可.
由于,
所以,故是單調(diào)遞減,于是.
令,即,
解得,或.
綜上所訴,使得所給不等式對一切都成立的實數(shù)存在,的取值范圍是.-------------------------------------------------------12分
本資料由《七彩教育網(wǎng)》 提供!
21.解:(1)由橢圓方程及雙曲線方程可得點直線方程是
且在直線上運動。
可設
則的垂直平分線方程為 ①
的垂直平分線方程為 ②
P是△ABC的外接圓圓心,點P的坐標滿足方程①和②
由①和②聯(lián)立消去得
故圓心P的軌跡E的方程為---------------------------------------------------------6分
(2)由圖可知,直線和的斜率存在且不為零,設的方程為,
,的方程為
由 得 ------------------------------8分
△=直線與軌跡E交于兩點。
設,則。
同理可得:四邊形MRNQ的面積
-----------------10分
當且僅當,即時,等號成立。
故四邊形MNRQ的面積的最小值為72。------------------------------------------------------12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com