0  436336  436344  436350  436354  436360  436362  436366  436372  436374  436380  436386  436390  436392  436396  436402  436404  436410  436414  436416  436420  436422  436426  436428  436430  436431  436432  436434  436435  436436  436438  436440  436444  436446  436450  436452  436456  436462  436464  436470  436474  436476  436480  436486  436492  436494  436500  436504  436506  436512  436516  436522  436530  447090 

本講概念性強、抽象性強、思維方法獨特。因此要立足于基礎(chǔ)知識、基本方法、基本問題的練習(xí),恰當(dāng)選取典型例題,構(gòu)建思維模式,造就思維依托和思維的合理定勢

1.使用公式P(A)=計算時,確定m、n的數(shù)值是關(guān)鍵所在,其計算方法靈活多變,沒有固定的模式,可充分利用排列組合知識中的分類計數(shù)原理和分步計數(shù)原理,必須做到不重復(fù)不遺漏

復(fù)習(xí)這部分內(nèi)容及解答此類問題首先必須使學(xué)生明確判斷兩點:(1)對于每個隨機實驗來說,所有可能出現(xiàn)的實驗結(jié)果數(shù)n必須是有限個;(2)出現(xiàn)的所有不同的實驗結(jié)果數(shù)m其可能性大小必須是相同的。只有在同時滿足(1)、(2)的條件下,運用的古典概型計算公式P(A)=m/n得出的結(jié)果才是正確的。

試題詳情

所以[來源:]

由事件的獨立性的

[來源:學(xué)##網(wǎng)]

解答2(Ⅰ)設(shè)事件A表示“一個月內(nèi)被投訴2次”設(shè)事件B表示“一個月內(nèi)被投訴的次數(shù)不超過1次”

所以

(Ⅱ)同解答1(Ⅱ)

(2008安徽理19)

(本小題滿分12分)

為防止風(fēng)沙危害,某地決定建設(shè)防護(hù)綠化帶,種植楊樹、沙柳等植物。某人一次種植了n株沙柳,各株沙柳成活與否是相互獨立的,成活率為p,設(shè)為成活沙柳的株數(shù),數(shù)學(xué)期望,標(biāo)準(zhǔn)差。

(Ⅰ)求n,p的值并寫出的分布列;

(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補種,求需要補種沙柳的概率

(1)由,從而

的分布列為


0
1
2
3
4
5
6








(2)記”需要補種沙柳”為事件A,  則  得

   或

試題詳情

題型1:隨機事件的定義

例1.判斷下列事件哪些是必然事件,哪些是不可能事件,哪些是隨機事件?

(1)“拋一石塊,下落”.

(2)“在標(biāo)準(zhǔn)大氣壓下且溫度低于0℃時,冰融化”;

(3)“某人射擊一次,中靶”;

(4)“如果ab,那么ab>0”;

(5)“擲一枚硬幣,出現(xiàn)正面”;

(6)“導(dǎo)體通電后,發(fā)熱”;

(7)“從分別標(biāo)有號數(shù)1,2,3,4,5的5張標(biāo)簽中任取一張,得到4號簽”;

(8)“某電話機在1分鐘內(nèi)收到2次呼叫”;

(9)“沒有水份,種子能發(fā)芽”;

(10)“在常溫下,焊錫熔化”.

解析:根據(jù)定義,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是隨機事件

點評:熟悉必然事件、不可能事件、隨機事件的聯(lián)系與區(qū)別。針對不同的問題加以區(qū)分。

例2.(1)如果某種彩票中獎的概率為,那么買1000張彩票一定能中獎嗎?請用概率的意義解釋。

解析:不一定能中獎,因為,買1000張彩票相當(dāng)于做1000次試驗,因為每次試驗的結(jié)果都是隨機的,即每張彩票可能中獎也可能不中獎,因此,1000張彩票中可能沒有一張中獎,也可能有一張、兩張乃至多張中獎。

點評:買1000張彩票,相當(dāng)于1000次試驗,因為每次試驗的結(jié)果都是隨機的,所以做1000次試驗的結(jié)果也是隨機的,也就是說,買1000張彩票有可能沒有一張中獎。

(2)在一場乒乓球比賽前,裁判員利用抽簽器來決定由誰先發(fā)球,請用概率的知識解釋其公平性。

解析:這個規(guī)則是公平的,因為抽簽上拋后,紅圈朝上與綠圈朝上的概率均是0.5,因此任何一名運動員猜中的概率都是0.5,也就是每個運動員取得先發(fā)球權(quán)的概率都是0.5。

點評:這個規(guī)則是公平的,因為每個運動員先發(fā)球的概率為0.5,即每個運動員取得先發(fā)球權(quán)的概率是0.5。事實上,只能使兩個運動員取得先發(fā)球權(quán)的概率都是0.5的規(guī)則都是公平的

題型2:頻率與概率

例3.某種菜籽在相同在相同的條件下發(fā)芽試驗結(jié)果如下表:(求其發(fā)芽的概率)

種子粒數(shù)
2
5
10
70
130
310
700
1500
2000
3000
發(fā)芽粒數(shù)
2
4
9
60
116
282
639
1339
1806
2715

解析:我們根據(jù)表格只能計算不同情況下的種子發(fā)芽的頻率分別是:1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905。隨著種子粒數(shù)的增加,菜籽發(fā)芽的頻率越接近于0.9,且在它附近擺動。故此種子發(fā)芽的概率為0.9。

點評:我們可以用頻率的趨向近似值表示隨機事件發(fā)生的概率

例4.進(jìn)行這樣的試驗:從0、1、2、…、9這十個數(shù)字中隨機取一個數(shù)字,重復(fù)進(jìn)行這個試驗10000次,將每次取得的數(shù)字依次記下來,我們就得到一個包括10000個數(shù)字的“隨機數(shù)表”.在這個隨機數(shù)表里,可以發(fā)現(xiàn)0、1、2、…、9這十個數(shù)字中各個數(shù)字出現(xiàn)的頻率穩(wěn)定在0.1附近.現(xiàn)在我們把一個隨機數(shù)表等分為10段,每段包括1000個隨機數(shù),統(tǒng)計每1000個隨機數(shù)中數(shù)字“7”出現(xiàn)的頻率,得到如下的結(jié)果:

段序:n=1000
1
2
3
4
5
6
7
8
9
10
出現(xiàn)“7”的頻數(shù)
95
88
95
112
95
99
82
89
111
102
出現(xiàn)“7”的頻率
0.095
0.088
0.095
0.112
0.095
0.099
0.082
0.089
0.111
0.102

由上表可見,每1000個隨機數(shù)中“7”出現(xiàn)的頻率也穩(wěn)定在0.1的附近.這就是頻率的穩(wěn)定性.我們把隨機事件A的頻率P(A)作為隨機事件A的概率P(A)的近似值。

點評:利用概率的統(tǒng)計定義,在計算每一個隨機事件概率時都要通過大量重復(fù)的試驗,列出一個表格,從表格中找到某事件出現(xiàn)頻率的近似值作為所求概率。這從某種意義上說是很繁瑣的

題型3:隨機事件間的關(guān)系

例5.(2009江西卷文)甲、乙、丙、丁4個足球隊參加比賽,假設(shè)每場比賽各隊取勝的概率相等,現(xiàn)任意將這4個隊分成兩個組(每組兩個隊)進(jìn)行比賽,勝者再賽,則甲、乙相遇的概率為                                                   (   )

A.          B.           C.       D.

[解析]所有可能的比賽分組情況共有種,甲乙相遇的分組情況恰好有6種,故選. 

       答案   D

(1)(2009江蘇卷)現(xiàn)有5根竹竿,它們的長度(單位:m)分別為2.5,2.6,2.7,2.8,2.9,若從中一次隨機抽取2根竹竿,則它們的長度恰好相差0.3m的概率為    .

[解析] 考查等可能事件的概率知識!

從5根竹竿中一次隨機抽取2根的可能的事件總數(shù)為10,它們的長度恰好相差0.3m的事件數(shù)為2,分別是:2.5和2.8,2.6和2.9,所求概率為0.2。

答案  0.2

(2)把標(biāo)號為1,2,3,4的四個小球隨機地分發(fā)給甲、乙、丙、丁四個人,每人分得一個。事件“甲分得1號球”與事件“乙分得1號球”是(  )

    (A)互斥但非對立事件              (B)對立事件

(C)相互獨立事件            (D)以上都不對

答案:A。

點評:一定要區(qū)分開對立和互斥的定義,互斥事件:不能同時發(fā)生的兩個事件叫做互斥事件;對立事件:不能同時發(fā)生,但必有一個發(fā)生的兩個事件叫做互斥事件。

例6.15.(2009湖北卷文)甲、乙、丙三人將參加某項測試,他們能達(dá)標(biāo)的概率分別是0.8、0.6、0.5,則三人都達(dá)標(biāo)的概率是       ,三人中至少有一人達(dá)標(biāo)的概率是      。

[解析]三人均達(dá)標(biāo)為0.8×0.6×0.5=0.24,三人中至少有一人達(dá)標(biāo)為1-0.24=0.76

答案  0.24    0.76

點評:本小題考查互斥事件、相互獨立事件的概率等基礎(chǔ)知識,及分析和解決實際問題的能力。

題型4:古典概率模型的計算問題

例7.從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率

解析:每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,

則A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],

事件A由4個基本事件組成,因而,P(A)==

點評:利用古典概型的計算公式時應(yīng)注意兩點:(1)所有的基本事件必須是互斥的;(2)m為事件A所包含的基本事件數(shù),求m值時,要做到不重不漏

例8.現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:

(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;

(2)如果從中一次取3件,求3件都是正品的概率。

分析:(1)為返回抽樣;(2)為不返回抽樣

解析:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗結(jié)果有10×10×10=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有8×8×8=83種,因此,P(A)= =0.512。

(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗的所有結(jié)果為10×9×8=720種.設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為8×7×6=336, 所以P(B)= ≈0.467。

解法2:可以看作不放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事件B包含的基本事件個數(shù)為8×7×6÷6=56,因此P(B)= ≈0.467。

點評:關(guān)于不放回抽樣,計算基本事件個數(shù)時,既可以看作是有順序的,也可以看作是無順序的,其結(jié)果是一樣的,但不論選擇哪一種方式,觀察的角度必須一致,否則會導(dǎo)致錯誤

題型5:利用排列組合知識解古典概型問題

例9.(2008四川理)

從甲、乙等10個同學(xué)中挑選4名參加某項公益活動,要求甲、乙中至少有1人參加,則不同的挑選方法共有( C )

 (A)種   (B)種   (C)種  (D)

[解]:∵從10個同學(xué)中挑選4名參加某項公益活動有種不同挑選方法;

     從甲、乙之外的8個同學(xué)中挑選4名參加某項公益活動有種不同挑選方法;

∴甲、乙中至少有1人參加,則不同的挑選方法共有種不同挑選方法  故選C;

[考點]:此題重點考察組合的意義和組合數(shù)公式;

[突破]:從參加 “某項”切入,選中的無區(qū)別,從而為組合問題;由“至少”從反面排除易于解決;

點評:該題通過排列、組合知識完成了古典概型的計算問題,同時要做到所有的基本事件必須是互斥的,要做到不重不漏。

例10.在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較。在試制某種牙膏新品種時,需要選用兩種不同的添加劑,F(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用。根據(jù)試驗設(shè)計原理,通常首先要隨機選取兩種不同的添加劑進(jìn)行搭配試驗

(Ⅰ)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;

(Ⅱ)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率;

解析:設(shè)“所選用的兩種不同的添加劑的芳香度之和等于4”的事件為A,“所選用的兩種不同的添加劑的芳香度之和不小于3”的事件為B

(Ⅰ)芳香度之和等于4的取法有2種:、,故。

(Ⅱ)芳香度之和等于1的取法有1種:;芳香度之和等于2的取法有1種:,故。

點評:高考對概率內(nèi)容的考查,往往以實際應(yīng)用題出現(xiàn)。這既是這類問題的特點,也符合高考發(fā)展方向,考生要以課本概念和方法為主,以熟練技能,鞏固概念為目標(biāo),查找知識缺漏,總結(jié)解題規(guī)律

題型6:易錯題辨析

例11.?dāng)S兩枚骰子,求所得的點數(shù)之和為6的概率

錯解:擲兩枚骰子出現(xiàn)的點數(shù)之和不同情況為{2,3,4,…,12},故共有11種基本事件,所以概率為P=;

剖析:以上11種基本事件不是等可能的,如點數(shù)和2只有(1,1),而點數(shù)之和為6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5種.事實上,擲兩枚骰子共有36種基本事件,且是等可能的,所以“所得點數(shù)之和為6”的概率為P=

我們經(jīng)常見的錯里還有“投擲兩枚硬幣的結(jié)果”,劃分基本事件“兩正、一正一反、兩反”,其中“一正一反”與“兩正”、“兩反”的機會是不均等

類型四:基本事件 “不可數(shù)”

由概率求值公式,求某一事件發(fā)生的概率時,要求試驗中所有可能出現(xiàn)的基本事件只有有限個

如果試驗所包含的基本事件是無限多個,那根本就不會得到基本事件的總數(shù),也就不能用公式來解決問題

例12.

甲、乙二人參加普法知識競賽,共有10個不同的題目,其中選擇題6個,判斷題4個,甲、乙二人一次各抽取一題,

(1)甲抽到選擇題,乙抽到判斷題的概率是多少?

錯解:甲從選擇題中抽到一題的可能結(jié)果有個,乙從判斷題中抽到一題的的可能結(jié)果是,故甲抽到選擇題,乙抽到判斷題的可能結(jié)果為;又甲、乙二人一次各抽取一題的結(jié)果有,所以概率值為。

剖析:錯把分步原理當(dāng)作分類原理來處理。

正解:甲從選擇題中抽到一題的可能結(jié)果有個,乙從判斷題中抽到一題的的可能結(jié)果是,故甲抽到選擇題,乙抽到判斷題的可能結(jié)果為;又甲、乙二人一次各抽取一題的結(jié)果有,所以概率值為

(2)甲、乙二人至少有一個抽到選擇題的概率是多少?

錯解:甲、乙中甲抽到判斷題的種數(shù)是6×9種,乙抽到判斷題的種數(shù)6×9種,故甲、乙二人至少有一個抽到選擇題的種數(shù)為12×9;又甲、乙二人一次各抽取一題的種數(shù)是10×9,故甲、乙二人至少有一個抽到選擇題的概率是。

剖析:顯然概率值不會大于1,這是錯解。該問題對甲、乙二人至少有一個抽到選擇題的計數(shù)是重復(fù)的,兩人都抽取到選擇題這種情況被重復(fù)計數(shù)

正解:甲、乙二人一次各抽取一題基本事件的總數(shù)是10×9=90;

方法一:分類計數(shù)原理

(1)只有甲抽到了選擇題的事件數(shù)是:6×4=24;

(2)只有乙抽到了選擇題的事件數(shù)是:6×4=24;

(3)甲、乙同時抽到選擇題的事件數(shù)是:6×5=30;

故甲、乙二人至少有一個抽到選擇題的概率是。

方法二:利用對立事件

事件“甲、乙二人至少有一個抽到選擇題”與事件“甲、乙兩人都未抽到選擇題”是對立事件

事件“甲、乙兩人都未抽到選擇題”的基本事件個數(shù)是4×3=12;

故甲、乙二人至少有一個抽到選擇題的概率是

例14(2009陜西卷文)(本小題滿分12分)

椐統(tǒng)計,某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)為0,1,2的概率分別為0.4,0.5,0.1

(Ⅰ) 求該企業(yè)在一個月內(nèi)共被消費者投訴不超過1次的概率;

(Ⅱ)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率

解  解答1(Ⅰ)設(shè)事件A表示“一個月內(nèi)被投訴的次數(shù)為0”事件B表示“一個月內(nèi)被投訴的次數(shù)為1”

所以

(Ⅱ)設(shè)事件表示“第個月被投訴的次數(shù)為0”事件表示“第個月被投訴的次數(shù)為1”事件表示“第個月被投訴的次數(shù)為2”事件D表示“兩個月內(nèi)被投訴2次”

所以

所以兩個月中,一個月被投訴2次,另一個月被投訴0次的概率為

試題詳情

5.古典概型

(1)古典概型的兩大特點:1)試驗中所有可能出現(xiàn)的基本事件只有有限個;2)每個基本事件出現(xiàn)的可能性相等;

(2)古典概型的概率計算公式:P(A)=;

一次試驗連同其中可能出現(xiàn)的每一個結(jié)果稱為一個基本事件,通常此試驗中的某一事件A由幾個基本事件組成.如果一次試驗中可能出現(xiàn)的結(jié)果有n個,即此試驗由n個基本事件組成,而且所有結(jié)果出現(xiàn)的可能性都相等,那么每一基本事件的概率都是。如果某個事件A包含的結(jié)果有m個,那么事件A的概率P(A)=。

試題詳情

4.事件間的運算

(1)并事件(和事件)

若某事件的發(fā)生是事件A發(fā)生或事件B發(fā)生,則此事件稱為事件A與事件B的并事件。

注:當(dāng)AB互斥時,事件A+B的概率滿足加法公式:

P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+)=P(A)+P()=1。

(2)交事件(積事件)

若某事件的發(fā)生是事件A發(fā)生和事件B同時發(fā)生,則此事件稱為事件A與事件B的交事件

試題詳情

3.事件間的關(guān)系

(1)互斥事件:不能同時發(fā)生的兩個事件叫做互斥事件;

(2)對立事件:不能同時發(fā)生,但必有一個發(fā)生的兩個事件叫做互斥事件;

(3)包含:事件A發(fā)生時事件B一定發(fā)生,稱事件A包含于事件B(或事件B包含事件A);

試題詳情

2.隨機事件的概率

事件A的概率:在大量重復(fù)進(jìn)行同一試驗時,事件A發(fā)生的頻率總接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)。

由定義可知0≤P(A)≤1,顯然必然事件的概率是1,不可能事件的概率是0。

試題詳情

1.隨機事件的概念

在一定的條件下所出現(xiàn)的某種結(jié)果叫做事件。

(1)隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件;

(2)必然事件:在一定條件下必然要發(fā)生的事件;

(3)不可能事件:在一定條件下不可能發(fā)生的事件

試題詳情

本講內(nèi)容在高考中所占比重不大,縱貫近幾年的高考形式對涉及到有關(guān)概念的某些計算要求降低,但試題中具有一定的靈活性、機動性

預(yù)測2011年高考:

(1)對于理科生來講,對隨機事件的考察,結(jié)合選修中排列、組合的知識進(jìn)行考察,多以選擇題、填空題形式出現(xiàn);

(2)對概率考察的重點為互斥事件、古典概型的概率事件的計算為主,而以實際應(yīng)用題出現(xiàn)的形式多以選擇題、填空題為主

試題詳情

3.通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。

試題詳情


同步練習(xí)冊答案