科目: 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)有2個零點,求實數(shù)的取值范圍;
(Ⅱ)若,關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了調(diào)查觀眾對電影“復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度,研究人員在某電影院隨機(jī)抽取了1000名觀眾作調(diào)查,所得結(jié)果如下所示,其中不喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局的觀眾占被調(diào)查觀眾總數(shù)的.
男性觀眾 | 女性觀眾 | 總計 | |
喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局 | 400 | ||
不喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局 | 200 | ||
總計 |
(Ⅰ)完善上述列聯(lián)表;
(Ⅱ)是否有99.9%的把握認(rèn)為觀眾對電影“復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度與性別具有相關(guān)性?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:與直線()交于,兩點.
(1)當(dāng)時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當(dāng)變動時,總有?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點為極點,為參數(shù)).在以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線與曲線C交于M,N兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某蛋糕店每天做若干個生日蛋糕,每個制作成本為50元,當(dāng)天以每個100元售出,若當(dāng)天白天售不出,則當(dāng)晚以30元/個價格作普通蛋糕低價售出,可以全部售完.
(1)若蛋糕店每天做20個生日蛋糕,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量(單位:個, )的函數(shù)關(guān)系;
(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個)整理得下表:
(。┘僭O(shè)蛋糕店在這100天內(nèi)每天制作20個生日蛋糕,求這100天的日利潤(單位:元)的平均數(shù);
(ⅱ)若蛋糕店一天制作20個生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤不少于900元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:y=kx+b,(0<b<1)和圓O:相交于A,B兩點.
(1)當(dāng)k=0時,過點A,B分別作圓O的兩條切線,求兩條切線的交點坐標(biāo);
(2)對于任意的實數(shù)k,在y軸上是否存在一點N,滿足?若存在,請求出此點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實數(shù)a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,試求函數(shù)圖像過點的切線方程;
(2)當(dāng)時,若關(guān)于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;
(3)若函數(shù)有兩個極值點,且不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,直線經(jīng)過橢圓的左頂點.
(1)求橢圓的方程;
(2)設(shè)直線()交橢圓于兩點(不同于點).過原點的一條直線與直線交于點,與直線分別交于點.
(ⅰ)當(dāng)時,求的最大值;
(ⅱ)若,求證:點在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com