科目: 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項運(yùn)動,得到如表的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.見附表:參照附表,得到的正確結(jié)論是( �。�
A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
C. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為鼓勵家�;�,與某手機(jī)通訊商合作,為教師辦理流量套餐.為了解該校教師手機(jī)流量使用情況,通過抽樣,得到位教師近
年每人手機(jī)月平均使用流量
(單位:
)的數(shù)據(jù),其頻率分布直方圖如下:
若將每位教師的手機(jī)月平均使用流量分別視為其手機(jī)月使用流量,并將頻率為概率,回答以下問題.
(Ⅰ) 從該校教師中隨機(jī)抽取人,求這
人中至多有
人月使用流量不超過
的概率;
(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:
套餐名稱 | 月套餐費(fèi)(單位:元) | 月套餐流量(單位: |
這三款套餐都有如下附加條款:套餐費(fèi)月初一次性收取,手機(jī)使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值
流量,資費(fèi)
元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值
流量,資費(fèi)
元/次,依次類推,如果當(dāng)月流量有剩余,系統(tǒng)將自動清零,無法轉(zhuǎn)入次月使用.
學(xué)校欲訂購其中一款流量套餐,為教師支付月套餐費(fèi),并承擔(dān)系統(tǒng)自動充值的流量資費(fèi)的,其余部分由教師個人承擔(dān),問學(xué)校訂購哪一款套餐最經(jīng)濟(jì)?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某運(yùn)動員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運(yùn)動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是D上的有界函數(shù),其中M稱為函數(shù)
的上界
已知函數(shù)
當(dāng)
,求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請說明理由;
若函數(shù)
在
上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設(shè)有編號為①,②,③,④,⑤的五個安全出口,若同時開放其中的兩個安全出口,疏散名乘客所需的時間如下:
安全出口編號 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客時間(s) | 120 | 220 | 160 | 140 | 200 |
則疏散乘客最快的一個安全出口的編號是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:
,
,
分別是橢圓短軸的上下兩個端點(diǎn),
是橢圓的左焦點(diǎn),P是橢圓上異于點(diǎn)
,
的點(diǎn),若
的邊長為4的等邊三角形.
寫出橢圓的標(biāo)準(zhǔn)方程;
當(dāng)直線
的一個方向向量是
時,求以
為直徑的圓的標(biāo)準(zhǔn)方程;
設(shè)點(diǎn)R滿足:
,
,求證:
與
的面積之比為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加一次抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商場對前5天抽獎活動的人數(shù)進(jìn)行統(tǒng)計,y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
(1)若從這5天隨機(jī)抽取兩天,求至少有1天參加抽獎人數(shù)超過70的概率;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計該活動持續(xù)7天,共有多少名顧客參加抽獎?
參考公式及數(shù)據(jù):.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線
的方程為
,曲線
是以坐標(biāo)原點(diǎn)
為頂點(diǎn),直線
為準(zhǔn)線的拋物線.以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求出直線與曲線
的極坐標(biāo)方程:
(2)點(diǎn)是曲線
上位于第一象限內(nèi)的一個動點(diǎn),點(diǎn)
是直線
上位于第二象限內(nèi)的一個動點(diǎn),且
,請求出
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線:
的左、右焦點(diǎn)分別是
、
,左、右兩頂點(diǎn)分別是
、
,弦AB和CD所在直線分別平行于x軸與y軸,線段BA的延長線與線段CD相交于點(diǎn)
如圖).
⑴若是
的一條漸近線的一個方向向量,試求
的兩漸近線的夾角
;
⑵若,
,
,
,試求雙曲線
的方程;
⑶在⑴的條件下,且,點(diǎn)C與雙曲線的頂點(diǎn)不重合,直線
和直線
與直線l:
分別相交于點(diǎn)M和N,試問:以線段MN為直徑的圓是否恒經(jīng)過定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo);若不是,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com