試題詳情
A. B.
試題詳情
C. D.
試題詳情
12.某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對(duì)項(xiàng)目甲的投資不小于對(duì)項(xiàng)目乙投資的倍,且對(duì)每個(gè)項(xiàng)目的投資不能低于5萬元,對(duì)項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤(rùn),對(duì)項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤(rùn),該公司正確規(guī)劃投資后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤(rùn)為 ( )
試題詳情
A.36萬元 B.31.2萬元 C.30.4萬元 D.24萬元
試題詳情
二、填空題:(本大題共4個(gè)小題,每小題4分,共16分。請(qǐng)把答案填在答題紙的相應(yīng)位置上) 13.若的終邊所在直線方程為
。
試題詳情
14.設(shè)O是△ABC內(nèi)部一點(diǎn),且則△AOB與△AOC面積之比是 。
試題詳情
試題詳情
16.下列等式:①;
試題詳情
②;
試題詳情
③;
試題詳情
④;
試題詳情
⑤; 其中有且只有一個(gè)是不成立的,則不成立的等式的序號(hào)為
。
試題詳情
三、解答題:本大題共6小題,滿分74分。解答應(yīng)寫出必要的文字說明、證明過程或演算步驟。請(qǐng)將解答過程寫在答題紙的相應(yīng)位置。
試題詳情
已知向量
試題詳情
(I)當(dāng)的值;
試題詳情
(II)求上的值域。
試題詳情
18.(本小題滿分12分) 某觀測(cè)站C在城A的南偏西20°的方向上,由A城出發(fā)有一條公路,走向是南偏東40°,在C處測(cè)得距C為31千米的公路上B處有一人正沿公路向A城走去,走了20千米后,到達(dá)D處,此時(shí)C、D間距離為21千米,問這人還需要走多少千米到達(dá)A城?
試題詳情
試題詳情
已知⊙O:和定義A(2,1),由⊙O外一點(diǎn)P(a,b)向⊙O引切線PQ,切點(diǎn)Q,且滿足|PQ|=|PA|。 (1)求實(shí)數(shù)a、b間滿足的等量關(guān)系; (2)求線段PQ長(zhǎng)的最小值; (3)若以P為圓心所作的⊙P與⊙Q有公共點(diǎn),試求半徑取最小值時(shí),⊙P的方程。
試題詳情
20.(本小題滿分12分) 如圖在長(zhǎng)方體ABCD―A1B1C1D1中,AB=AA1=2,BC=1,點(diǎn)E、F、G分別是AA1、AB、DD1的中點(diǎn)。 (I)求證:FG//平面BCD1; (II)求二面角A―CE―D的正弦值。
試題詳情
|
|
試題詳情
試題詳情
在數(shù)列
試題詳情
(I)求;
試題詳情
(II)設(shè);
試題詳情
(III)是否存在自然數(shù)m,使得對(duì)任意成立?若存在,求出m的最大值;若不存在,請(qǐng)說明理由。
試題詳情
試題詳情
已知
試題詳情
(I)求函數(shù)上的最小值;
試題詳情
(II)對(duì)一切的取值范圍;
試題詳情
(III)證明:對(duì)一切成立.
試題詳情
一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。 1―5 BCBAB 6―10 DCCCD 11―12 DB 二、填空題:本大題共4個(gè)小題,每小題4分,共16分。 13. 14.1:2 15.①②⑤ 16.⑤
20090203 17.(本小題滿分12分) 解:(I)共線 ………………3分 故 …………6分 (II) …………12分 18.(本小題滿分12分) 解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米, ∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .
, .
.……9分 在△ACD中,由正弦定理得: .
19.(本小題滿分12分) 解:(1)連結(jié)OP,∵Q為切點(diǎn),PQOQ, 由勾股定理有, 又由已知 即: 化簡(jiǎn)得 …………3分 (2)由,得 …………6分 故當(dāng)時(shí),線段PQ長(zhǎng)取最小值 …………7分 (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點(diǎn),⊙O的半徑為1, ∴ 即R且R 而 故當(dāng)時(shí),,此時(shí)b=―2a+3= 得半徑最最小值時(shí)⊙P的方程為…………12分 20.(本小題滿分12分) 解:(I)過G作GM//CD交CC1于M,交D1C于O。
∵G為DD1的中點(diǎn),∴O為D1C的中點(diǎn) 從而GO 故四邊形GFBO為平行四邊形…………3分 ∴GF//BO 又GF平面BCD1,BO平面BCD1 ∴GF//平面BCD1。 …………5分 (II)過A作AH⊥DE于H, 過H作HN⊥EC于N,連結(jié)AN。 ∵DC⊥平面ADD1A1,∴CD⊥AH。 又∵AH⊥DE,∴AH⊥平面ECD。 ∴AH⊥EC。 …………7分 又HN⊥EC ∴EC⊥平面AHN。 故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分 在Rt△EAD中,∵AD=AE=1,∴AH= 在Rt△EAC中,∵EA=1,AC= ∴ …………12分 21.(本小題滿分12分) 解:(I)
(II)
(III)令上是增函數(shù)
22.(本小題滿分12分) 解:(I) 單調(diào)遞增。 …………2分 ①,不等式無解; ②; ③; 所以 …………5分
(II), …………6分
…………8分 因?yàn)閷?duì)一切……10分
(III)問題等價(jià)于證明, 由(1)可知
…………12分 設(shè) 易得 當(dāng)且僅當(dāng)成立。
…………14分
| | | | | | | | | | |