科目: 來源: 題型:
【題目】閱讀下列材料,解決后面三個問題:
我們可以將任意三位數(shù)表示為(其中a、b、c分別表示百位上的數(shù)字,十位上的數(shù)字和個位上的數(shù)字,且a ≠0),顯然=100a +10b +c;我們形如和的兩個三位數(shù)稱為一對“姊妹數(shù)”(其中x、y、z是三個連續(xù)的自然數(shù))如:123和321是一對姊妹數(shù),678和876是一對“姊妹數(shù)”。
(1)寫出任意兩對“姊妹數(shù)”。
(2)一對“姊妹數(shù)”的和為1110,求這對“姊妹數(shù)”。
(3)如果用x表示百位數(shù)字,求證:任意一對“姊妹數(shù)”的和能被37整除.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,將正方形ABCD置于平面直角坐標系中,其中AD邊在x軸上,其余各邊均與坐標軸平行,直線l:y=x﹣3沿x軸的負方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t(秒),m與t的函數(shù)圖象如圖2所示,則圖2中b的值為( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD= ∠BAC=60°,于是 = ;
遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②請直接寫出線段AD,BD,CD之間的等量關系式;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長。
查看答案和解析>>
科目: 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A.,B兩城決定向C,D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A,B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C,D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C, D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸。現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調運才能使總運費最少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:△ABC中,∠C=90°.
(1)如圖1,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的長;
(2)如圖2,請利用沒有刻度的直尺和圓規(guī),在線段AB上找一點F,使得點F到邊AC的距離等于FB(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標注) .
查看答案和解析>>
科目: 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關系,其部分圖象如圖所示.
(1)求y關于x的函數(shù)關系式;
(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油.在此次行駛過程中,行駛了450千米時,司機發(fā)現(xiàn)離前方最近的加油站有75千米的路程.在開往該加油站的途中,當汽車開始提示加油時,離加油站的路程是多少千米?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A和點B在數(shù)軸上對應的數(shù)分別為a和b,且(a+6)2+|b﹣8|=0.
(1)求線段AB的長;
(2)點C在數(shù)軸上所對應的數(shù)為x,且x是方程x﹣1=x+1的解,在線段AB上是否存在點D,使得AD+BD=CD?若存在,請求出點D在數(shù)軸上所對應的數(shù),若不存在,請說明理由;
(3)在(2)的條件下,線段AD和BC分別以6個單位長度/秒和5個單位長度/秒的速度同時向右運動,運動時間為t秒,M為線段AD的中點,N為線段BC的中點,若MN=12,求t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2015南通)如圖,在ABCD中,點E,F分別在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求證:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OB為∠AOC內一條射線,∠AOB的余角是它自身的兩倍.
(1)求∠AOB的度數(shù);
(2)射線OE從OA開始,在∠AOB內以1°/s的速度繞著O點逆時針方向旋轉,轉到OB停止,同時射線OF在∠BOC內從OB開始以3°/s的速度繞O點逆時針方向旋轉轉到OC停止,設運動時間為t秒.
①若OE,OF運動的任一時刻,均有∠COF=3∠BOE,求∠AOC的度數(shù);
②OP為∠AOC內任一射線,在①的條件下,當t=10時,以OP為邊所有角的度數(shù)和的最小值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出“迎元旦”促銷打折活動,具體優(yōu)惠情況如表:
購物總金額(原價) | 折扣 |
不超過5000元的部分 | 九折 |
超過5000元且不超過10000元的部分 | 八折 |
超過10000元且不超過20000元的部分 | 七折 |
…… | …… |
例如:若購買的商品原價為15000元,實際付款金額為:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若這種品牌電腦的原價為8000元/臺,請求出張老師實際付款金額;
(2)已知張老師購買一臺該品牌電腦實際付費5700元.
①求該品牌電腦的原價是多少元/臺?
②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進價為多少元/臺?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com