科目: 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為菱形ABCD的對稱中心,已知C(2,0),D(0,﹣1),N為線段CD上一點(不與C、D重合).
(1)求以C為頂點,且經(jīng)過點D的拋物線解析式;
(2)設(shè)N關(guān)于BD的對稱點為N1,N關(guān)于BC的對稱點為N2,求證:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)過點N作y軸的平行線交(1)中的拋物線于點P,點Q為直線AB上的一個動點,且∠PQA=∠BAC,求當(dāng)PQ最小時點Q坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知Rt△ABC的直角邊AC與Rt△DEF的直角邊DF在同一條直線上,且AC=60cm,BC=45cm,DF=6cm,EF=8cm.現(xiàn)將點C與點F重合,再以4cm/s的速度沿
CA方向移動△DEF;同時,點P從點A出發(fā),以5cm/s的速度沿AB方向移動.設(shè)移動時間為t(s),以點P為圓心,3t(cm)長為半徑的⊙P與直線AB相交于點M,N,當(dāng)點F與點A重合時,△DEF與點P同時停止移動,在移動過程中:
(1)連接ME,當(dāng)ME∥AC時,t=________s;
(2)連接NF,當(dāng)NF平分DE時,求t的值;
(3)是否存在⊙P與Rt△DEF的兩條直角邊所在的直線同時相切的時刻?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面坐標(biāo)系中,為原點,直線交軸正半軸于點,交軸正半軸于點.
(1) 如圖1,直線上有和兩點,的相反數(shù)是,是的算術(shù)平方根,求:
①____ ; _____ ; ②點在軸正半軸上運動,使得,則點的坐標(biāo)為 .
(2)如圖2, 若的平分線與的平分線反向延長線交于點,設(shè),求證:的值為定值;
(3)如圖3,在直線上, 在軸上,在中,始終滿足以下條件:為最大邊, ,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點,將這些亮點連接得到一條直線,稱這條直線是亮點的隱線,答下列問題:
(1) 已知,則是隱線的亮點的是 ;
(2) 設(shè)是隱線的兩個亮點,求方程中的最小的正整數(shù)解;
(3)已知是實數(shù), 且,若是隱線的一個亮點,求隱線中的最大值和最小值的和.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點E,
(1)若∠ACE=18°,則∠ECD=
(2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.
(3)如圖2,作△ABC的高AF并延長,交BD于點G,交CD延長線于點H,求證:CH2+DH2=2AD2.
查看答案和解析>>
科目: 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌
粽子,每盒進(jìn)價是40元,超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn):當(dāng)售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價 (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價定為多少元時,每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,且OA=OB.
(1)求證:四邊形ABCD是矩形;
(2)若AB=6,∠AOB=120°,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com