相關習題
 0  234961  234969  234975  234979  234985  234987  234991  234997  234999  235005  235011  235015  235017  235021  235027  235029  235035  235039  235041  235045  235047  235051  235053  235055  235056  235057  235059  235060  235061  235063  235065  235069  235071  235075  235077  235081  235087  235089  235095  235099  235101  235105  235111  235117  235119  235125  235129  235131  235137  235141  235147  235155  266669 

科目: 來源: 題型:填空題

17.已知a,b為正實數(shù),向量$\overrightarrow{m}$=(a,4),向量$\overrightarrow{n}$=(b,b-1),若$\overrightarrow{m}$∥$\overrightarrow{n}$,則a+b最小值為9.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知等比數(shù)列{an}的前n項和為Sn,則下列結(jié)論一定成立的是(  )
A.若a5>0,則a2017<0B.若a6>0,則a2018<0
C.若a5>0,則S2017>0D.若a6>0,則S2018>0

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知直線l過定點A(2,-1),圓C:x2+y2-8x-6y+21=0.
(1)若l與圓C相切,求l的方程;
(2)若l與圓C交于M,N兩點,求△CMN面積的最大值,并求此時l的直線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在平面直角坐標系xOy中,已知直線l的斜率為2.
(1)若直線l過點 A(-1,3),求直線l的方程;
(2)若直線l在兩坐標軸上的截距之和為4,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知 x,y∈(-1,1),則$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$的最小值為$4\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=(x+a)ex+2(其中a∈R,e是自然對數(shù)的底數(shù),e=2.71828…).
(Ⅰ) 求a的值;
(Ⅱ) 若x∈[-1,2]時,方程f(x)=m有實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.${({\root{3}{x}-\frac{1}{x}})^8}$二項展開式的常數(shù)項為28.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知銳角△ABC中的三個內(nèi)角分別為A,B,C.
(1)設$\overrightarrow{BC}•\overrightarrow{CA}=\overrightarrow{CA}•\overrightarrow{AB}$,判斷△ABC的形狀;
(2)設向量$\overrightarrow s=(2sinC,-\sqrt{3})$,$\overrightarrow t=(cos2C,2{cos^2}\frac{C}{2}-1)$,且$\overrightarrow s∥\overrightarrow t$,若$sinA=\frac{1}{3}$,求$sin(\frac{π}{3}-B)$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

9.定義在R上的奇函數(shù)f(x),當x≥0時,$f(x)=\left\{\begin{array}{l}\frac{-2x}{x+1},x∈[0,1)\\ 1-|x-3|,x∈[1,+∞)\end{array}\right.$則函數(shù)$F(x)=f(x)-\frac{1}{π}$的所有零點之和為$\frac{1}{1-2π}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知$cos(\frac{5π}{2}+α)=\frac{3}{5}$,$-\frac{π}{2}<α<0$,則sin2α的值是-$\frac{24}{25}$.

查看答案和解析>>

同步練習冊答案