科目: 來源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出以下三個命題:
①若,則;
②在中,若,則;
③在一元二次方程中,若,則方程有實數(shù)根.
其中原命題、逆命題、否命題、逆否命題均為真命題的是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)P是橢圓上一點,M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目: 來源: 題型:
【題目】已知, ,其中是自然常數(shù), .
(1)當(dāng)時,求的極值,并證明恒成立;
(2)是否存在實數(shù),使的最小值為 ?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績?nèi)缦卤硭荆?/span>
學(xué)生 | A1 | A2 | A3 | A4 | A5 |
數(shù)學(xué)(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)要從5名學(xué)生中選2人參加一項活動,求選中的學(xué)生中至少有一人的物理成績高于90分的概率;
(2)請在所給的直角坐標(biāo)系中畫出它們的散點圖,并求這些數(shù)據(jù)線性回歸方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】為征求個人所得稅法修改建議,某機(jī)構(gòu)對當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點圖和對比表:
攝氏溫度 | ||||||||
熱飲杯數(shù) |
(1)從散點圖可以發(fā)現(xiàn),各點散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計學(xué)認(rèn)為,對于變量、,如果,那么負(fù)相關(guān)很強(qiáng);如果,那么正相關(guān)很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過的最大整數(shù),如,.對于(i)中求出的線性回歸方程,將視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知氣溫與當(dāng)天熱飲每杯的銷售利潤的關(guān)系是 (單位:元),請問當(dāng)氣溫為多少時,當(dāng)天的熱飲銷售利潤總額最大?
(參考公式),,
(參考數(shù)據(jù)),, .
,,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X、Y、Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結(jié)果;
②設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過2秒的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com