相關(guān)習(xí)題
 0  363699  363707  363713  363717  363723  363725  363729  363735  363737  363743  363749  363753  363755  363759  363765  363767  363773  363777  363779  363783  363785  363789  363791  363793  363794  363795  363797  363798  363799  363801  363803  363807  363809  363813  363815  363819  363825  363827  363833  363837  363839  363843  363849  363855  363857  363863  363867  363869  363875  363879  363885  363893  366461 

科目: 來源: 題型:

【題目】辰星旅游度假村有甲種風(fēng)格客房15間,乙種風(fēng)格客房20間.按現(xiàn)有定價:若全部入住,一天營業(yè)額為8500元;若甲、乙兩種風(fēng)格客房均有10間入住,一天營業(yè)額為5000元.

(1)求甲、乙兩種客房每間現(xiàn)有定價分別是多少元?

(2)度假村以乙種風(fēng)格客房為例,市場情況調(diào)研發(fā)現(xiàn):若每個房間每天按現(xiàn)有定價,房間會全部住滿;當(dāng)每個房間每天的定價每增加20元時,就會有兩個房間空閑.如果游客居住房間,度假村需對每個房間每天支出80元的各種費(fèi)用.當(dāng)每間房間定價為多少元時,乙種風(fēng)格客房每天的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目: 來源: 題型:

【題目】勝利中學(xué)為豐富同學(xué)們的校園生活,舉行校園電視臺主待人選拔賽,現(xiàn)將36名參賽選手的成績(單位:分)統(tǒng)計(jì)并繪制成頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖,部分信息如下:

請根據(jù)統(tǒng)計(jì)圖的信息,解答下列問題:

(1)補(bǔ)全頻數(shù)分布直方圖,并求扇形統(tǒng)計(jì)圖中扇形對應(yīng)的圓心角度數(shù);

(2)成績在區(qū)域的選手,男生比女生多一人,從中隨機(jī)抽取兩人臨時擔(dān)任該校藝術(shù)節(jié)的主持人,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于兩點(diǎn),,其中.下列四個結(jié)論:①;②;③;④,正確的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=- x2 + 4x上,且橫坐標(biāo)為1,點(diǎn)B與點(diǎn)A關(guān)于拋物線的對稱軸對稱,直線ABy軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E的坐標(biāo)為(1,1).

(1)求線段AB的長.

(2)點(diǎn)P為線段AB.上方拋物線上的任意一點(diǎn),過點(diǎn)PAB的垂線交AB于點(diǎn)H,點(diǎn)Fy軸上一點(diǎn),當(dāng)PBE的面積最大時,求PH + HF + FO的最小值.

(3)(2)中,PH+HF+FO取得最小值時,將CFH繞點(diǎn)C順時針旋轉(zhuǎn)60°后得到CF'H',過點(diǎn)F'CF'的垂線與直線AB交于點(diǎn)Q,點(diǎn)R為拋物線對稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使以點(diǎn)DQ,R,S為頂點(diǎn)的四邊形為菱形,若存在,請直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).已知拋物線是常數(shù)),頂點(diǎn)為.

(Ⅰ)當(dāng)拋物線經(jīng)過點(diǎn)時,求頂點(diǎn)的坐標(biāo);

(Ⅱ)若點(diǎn)軸下方,當(dāng)時,求拋物線的解析式;

(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點(diǎn).當(dāng)時,求拋物線的解析式.

查看答案和解析>>

科目: 來源: 題型:

【題目】正方形ABCD的邊長為2,將射線AB繞點(diǎn)A順時針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對稱,連接CN

(1)如圖,當(dāng)0°<α<45°時:

①依題意補(bǔ)全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當(dāng)45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當(dāng)0°<α<90°時,若邊AD的中點(diǎn)為F,直接寫出線段EF長的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時,每件可獲利120元,每增加1件,當(dāng)天平均每件獲利減少2元.設(shè)每天安排x人生產(chǎn)乙產(chǎn)品.

(1)根據(jù)信息填表

產(chǎn)品種類

每天工人數(shù)(人)

每天產(chǎn)量(件)

每件產(chǎn)品可獲利潤(元)

15

(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多550元,求每件乙產(chǎn)品可獲得的利潤.

(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤W(元)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.

(1)求證方程有兩個不相等的實(shí)數(shù)根.

(2)當(dāng)m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,二次函數(shù)y= ax2 + bx +c經(jīng)過點(diǎn)A(-1,0), B(3,0) C(0,-3).

(1)求該二次函數(shù)的解析式.

(2)利用圖象的特點(diǎn)填空.

①當(dāng)x= ___ 時方程ax2 + bx+c=-3.

當(dāng)x= ___時方程ax2 +bx+c=-4.

②不等式ax2 + bx + c> 0的解集為

不等式-4<ax2+bx+c<0的解集為.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4, 點(diǎn)O的中心, FOG = 120°, 繞點(diǎn)O旋轉(zhuǎn)∠FOG,分別交線段AB、BCD E兩點(diǎn),連接DE,給出下列四個結(jié)論:OD= OE;;③四邊形ODBE的面積始終等于;周長的最小值為6.上述結(jié)論中正確的有_________(寫出序號)

查看答案和解析>>

同步練習(xí)冊答案