科目: 來源: 題型:
【題目】已知動圓過定點,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于兩點,試探究:當(dāng)直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個命題中,假命題是_________ (填序號).
①經(jīng)過定點P(x0,y0)的直線不一定都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③與兩條坐標(biāo)軸都相交的直線不一定可以用方程表示;
④經(jīng)過點Q(0,b)的直線都可以表示為y=kx+b.
查看答案和解析>>
科目: 來源: 題型:
【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程.
(1)若點為拋物線()準(zhǔn)線上一點,點均在該拋物線上,并且直線經(jīng)過該拋物線的焦點,證明.
(2)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日與月日的數(shù)據(jù),求關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的一個焦點與短軸的兩個端點是正三角形的三個項點,點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)不過原點且斜率為的直線與橢圓交于不同的兩點,線段的中點為,直線與橢圓交于,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】求適合下列條件的直線方程:
(1)經(jīng)過點P(3,2)且在兩坐標(biāo)軸上的截距相等;
(2)經(jīng)過點A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,過拋物線上一點,作兩條直線分別交拋物線于,當(dāng)與的斜率存在且傾斜角互補時:
(1)求的值;
(2)若直線在軸上的截距時,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為弘揚民族古典文化,學(xué)校舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確給改選手記正10分,否則記負(fù)10分.根據(jù)以往統(tǒng)計,某參賽選手能答對每一個問題的概率為;現(xiàn)記“該選手在回答完個問題后的總得分為”.
(1)求且的概率;
(2)記,求的分布列,并計算數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓:的左、右焦點分別為,右頂點為,上頂點為, 若成等比數(shù)列,橢圓上的點到焦點的最短距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為直線上任意一點,過的直線交橢圓于點,且,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com