科目: 來源: 題型:
【題目】如圖四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD= .
(1)求三棱錐A﹣PCD的體積;
(2)問:棱PB上是否存在點E,使得PD∥平面ACE?若存在,求出 的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )在一個周期內(nèi)的圖像如圖所示,其中M( ,2),N( ,0).
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且a= ,c=3,f( )= ,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為, .
(Ⅰ)若直線與曲線交于不同的兩點, ,當(dāng)時,求的值;
(Ⅱ)當(dāng)時,求曲線關(guān)于直線對稱的曲線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩人進(jìn)行乒乓球決賽,比賽采取七局四勝制.現(xiàn)在的情形是甲勝3局,乙勝2局.若兩人勝每局的概率相同,則甲獲得冠軍的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)剛搬遷到新校區(qū),學(xué)校考慮,若非住校生上學(xué)路上單程所需時間人均超過20分鐘,則學(xué)校推遲5分鐘上課.為此,校方隨機(jī)抽取100個非住校生,調(diào)查其上學(xué)路上單程所需時間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求頻率分布直方圖中a的值;
(2)從統(tǒng)計學(xué)的角度說明學(xué)校是否需要推遲5分鐘上課;
(3)若從樣本單程時間不小于30分鐘的學(xué)生中,隨機(jī)抽取2人,求恰有一個學(xué)生的單程時間落在[40,50]上的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在多面體中, 與均為邊長為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】有兩個袋子,其中甲袋中裝有編號分別為1、2、3、4的4個完全相同的球,乙袋中裝有編號分別為2、4、6的3個完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個球,求兩球編號之和小于8的概率;
(Ⅱ)從甲袋中取2個球,從乙袋中取一個球,求所取出的3個球中含有編號為2的球的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測.
車間 | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋擲一枚骰子,當(dāng)它每次落地時,向上一面的點數(shù)稱為該次拋擲的點數(shù),可隨機(jī)出現(xiàn)1到6點中的任一個結(jié)果.連續(xù)拋擲兩次,第一次拋擲的點數(shù)記為a,第二次拋擲的點數(shù)記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】一盒中裝有各色球12只,其中5個紅球,4個黑球,2個白球,1個綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com