科目: 來源: 題型:
【題目】為比較甲乙兩地某月12時的氣溫狀況,選取該月5天中12時的氣溫數(shù)據(jù)(單位:)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月12時的平均氣溫低于乙地該月12時的平均氣溫;
②甲地該月12時的平均氣溫高于乙地該月12時的平均氣溫;
③甲地該月12時的氣溫的標準差小于乙地該月12時的氣溫的標準差;
④甲地該月12時的氣溫的標準差大于乙地該月12時的氣溫的標準差.
其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目: 來源: 題型:
【題目】蝴蝶定理因其美妙的構(gòu)圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓的方程為,直線與圓交于,,直線與圓交于,.原點在圓內(nèi).
(1)求證:.
(2)設(shè)交軸于點,交軸于點.求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(且為常數(shù)).
(1)當時,討論函數(shù)在的單調(diào)性;
(2)設(shè)可求導數(shù),且它的導函數(shù)仍可求導數(shù),則再次求導所得函數(shù)稱為原函數(shù)的二階函數(shù),記為,利用二階導函數(shù)可以判斷一個函數(shù)的凹凸性.一個二階可導的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個函數(shù)在的二階導函數(shù)非負.
若在不是凸函數(shù),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學家歐拉在1765年提出:三角形的外心、重心位于同一直線上,這條直線被后人稱之為三角形的歐拉線,若的頂點,,且的歐拉線的方程為.
(1)求外心(外接圓圓心)的坐標;
(2)求頂點的坐標.
(注:如果三個頂點坐標分別為,,,則重心的坐標是.)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為F,過拋物線上一點P作拋物線的切線交x軸于點D,交y軸于Q點,當時,.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點在拋物線上,且滿足,其中點,若拋物線上存在異于的點H,使得經(jīng)過三點的圓和拋物線在點處有相同的切線,求點H的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度)..
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一般地,對于直線及直線外一點,我們有點到直線的距離公式為:”
(1)證明上述點到直線的距離公式
(2)設(shè)直線,試用上述公式求坐標原點到直線距離的最大值及取最大值時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com