相關(guān)習(xí)題
 0  209705  209713  209719  209723  209729  209731  209735  209741  209743  209749  209755  209759  209761  209765  209771  209773  209779  209783  209785  209789  209791  209795  209797  209799  209800  209801  209803  209804  209805  209807  209809  209813  209815  209819  209821  209825  209831  209833  209839  209843  209845  209849  209855  209861  209863  209869  209873  209875  209881  209885  209891  209899  266669 

科目: 來源: 題型:

如圖,空間四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的中點,G,H分別是BC,CD邊上的點,且
CG
GB
=
CH
HD
=
1
2
.求證:四邊形GHFE是梯形.

查看答案和解析>>

科目: 來源: 題型:

已知圓O的方程為x2+y2=9,求該圓中經(jīng)過點A(1,2)的弦的中點P的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

在四棱錐P-ABCD中,AB∥CD,AB=
1
2
DC=1,BP=BC=
2
,PC=2,AB⊥平面PBC,F(xiàn)為PC中點.
(Ⅰ)求證:BF∥平面PAD;
(Ⅱ)求證:平面ADP⊥平面PDC;
(Ⅲ)求VP-ABCD

查看答案和解析>>

科目: 來源: 題型:

已知A、B、C、D四點不共面,M、N分別是△ABD和△BCD的重心.求證:MN∥平面ACD.

查看答案和解析>>

科目: 來源: 題型:

已知反比例函數(shù)y=
1
x
的圖象C是以x軸與y軸為漸近線的等軸雙曲線.
(1)求雙曲線C的頂點坐標(biāo)與焦點坐標(biāo);
(2)設(shè)直線l過點P(0,4),且與雙曲線C交于A、B兩點,與x軸交于點Q.
①求A、B中點M的軌跡方程;
②當(dāng)
PQ
1
QA
2
QB
,且λ12=-8時,求點Q的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

如圖,MA⊥平面ABCD,四邊形ABCD為菱形,四邊形ADNM為平行四邊形,點E為AB中點.
(Ⅰ)求證:AN∥平面MEC;
(Ⅱ)求證:AC⊥平面BDN.

查看答案和解析>>

科目: 來源: 題型:

已知正項數(shù)列{an}的前項和為Sn,且滿足Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=
1
an
,數(shù)列{bn},滿足b1c1+b2c2+…+bncn=(2n-1)2n+1+2,求出數(shù)列{bn}的通項公式.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=log2(x-1),g(
2x-t
2
)=2x(t∈R)

(1)求y=g(x)的解析式;
(2)若t=1,求當(dāng)x∈[2,3]時,g(x)-f(x)的最小值;
(3)若在x∈[2,3]時,恒有g(shù)(x)≥f(x)成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k為常數(shù)).
(1)若f(x)的圖象中相鄰兩對稱軸之間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]時,f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
(Ⅰ)證明:平面A1AC⊥平面AB1B;
(Ⅱ)若點P為B1C1的中點,求三棱錐P-ABC與四棱錐P-AA1B1A1的體積之比.

查看答案和解析>>

同步練習(xí)冊答案