相關習題
 0  256793  256801  256807  256811  256817  256819  256823  256829  256831  256837  256843  256847  256849  256853  256859  256861  256867  256871  256873  256877  256879  256883  256885  256887  256888  256889  256891  256892  256893  256895  256897  256901  256903  256907  256909  256913  256919  256921  256927  256931  256933  256937  256943  256949  256951  256957  256961  256963  256969  256973  256979  256987  266669 

科目: 來源: 題型:

【題目】已知 ≤a≤1,若函數(shù)f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數(shù)表達式;
(2)判斷函數(shù)g(a)在區(qū)間[ ,1]上的單調性,并求出g(a)的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

I)若,求函數(shù)的單調區(qū)間;(其中是自然對數(shù)的底數(shù))

II)設函數(shù),當時,曲線有兩個交點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)是R上的偶函數(shù),且當x>0時,函數(shù)的解析式為
(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求當x<0時,函數(shù)的解析式.

查看答案和解析>>

科目: 來源: 題型:

【題目】某種商品在近30天內每件的銷售價格P(元)與時間t(天)的函數(shù)關系式近似滿足P= ,商品的日銷售量Q(件)與時間t(天)的函數(shù)關系式近似滿足Q=﹣t+40(1≤t≤30,t∈N).
(1)求這種商品日銷售金額y與時間t的函數(shù)關系式;
(2)求y的最大值,并指出日銷售金額最大的一天是30天中第幾天.

查看答案和解析>>

科目: 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以元/個的價格出售.如果當天賣不完,剩下的面包以元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以(單位:個, )表示面包的需求量, (單位:元)表示利潤.

(Ⅰ)求關于的函數(shù)解析式;

(Ⅱ)根據(jù)直方圖估計利潤不少于元的概率;

III)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,已知點,曲線的參數(shù)方程為.以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(Ⅰ)判斷點與直線的位置關系并說明理由;

(Ⅱ)設直線與曲線的兩個交點分別為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知關于x的方程x2+ax+a﹣2=0.
(1)當該方程的一個根為1時,求a的值及該方程的另一根;
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
(3)設該方程的兩個實數(shù)根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是(
A.減函數(shù)
B.增函數(shù)
C.有增有減
D.增減性不確定

查看答案和解析>>

科目: 來源: 題型:

【題目】已知長方形, , ,以的中點為原點,建立如圖所示的平面直角坐標系.

(1)求以為焦點,且過兩點的橢圓的標準方程;

(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如甲圖所示,在矩形中, , , 的中點,將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面;

求二面角的余弦值.

查看答案和解析>>

同步練習冊答案