科目: 來源: 題型:
【題目】如圖,長方形ABCD中,AB=3,BC=4,點E是BC邊上任一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當CE的長為_____時,△CEB′恰好為直角三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小剛將一個正方形紙片剪去一個寬為5cm的長條后,再從剩下的長方形紙片上剪去一個寬為6cm的長條,如果兩次剪下的長條面積正好相等,求兩個所剪下的長條的面積之和為( 。
A.215cm2B.250cm2C.300cm2D.320cm2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標系中,已知直線與軸相交于點,與軸交于點.
(1)求的值及的面積;
(2)點在軸上,若是以為腰的等腰三角形,直接寫出點的坐標;
(3)點在軸上,若點是直線上的一個動點,當的面積與的面積相等時,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】在東營市中小學(xué)標準化建設(shè)工程中,某學(xué)校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
查看答案和解析>>
科目: 來源: 題型:
【題目】為響應(yīng)綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y(元)與騎行時間x(時)之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:
(1)求手機支付金額y(元)與騎行時間x(時)的函數(shù)關(guān)系式;
(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時間幫他確定選擇哪種支付方式比較合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點D在拋物線上,點E在拋物線的對稱軸上,若四邊形AODE是平行四邊形,求點D的坐標.
(3)P是拋物線上的第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足是M,是否存在點p,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,點D、E、F分別是邊AB、BC、CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸交于A,B兩點,與y軸交于點C,點D,C關(guān)于拋物線的對稱軸對稱,直線AD與y軸相交于點E.
(1)求直線AD的解析式;
(2)如圖1,直線AD上方的拋物線上有一點F,過點F作FG⊥AD于點G,作FH平行于x軸交直線AD于點H,求△FGH周長的最大值;
(3)如圖2,點M是拋物線的頂點,點P是y軸上一動點,點Q是坐標平面內(nèi)一點,四邊形APQM是以PM為對角線的平行四邊形,點Q′與點Q關(guān)于直線AM對稱,連接M Q′,P Q′.當△PM Q′與□APQM重合部分的面積是□APQM面積的時,求□APQM面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題背景:如圖(1)在四邊形ABCD中,∠ACB=∠ADB=90°,AD=BD,探究線段AC、BC、CD之間的數(shù)量關(guān)系.小明探究此問題的思路是:將△BCD繞點D逆時針旋轉(zhuǎn)90°到△AED處,點B、C分別落在點A、E處(如圖(2)),易證點C、A、E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
簡單應(yīng)用:
(1)在圖(1)中,若AC=,BC=2,求CD的長;
(2)如圖(3)AB是⊙O的直徑,點C、D在⊙O上,AD=BD,若AB=13,BC=12,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com